Nested Metasampling for Material Science

State of the art and objectives

We propose an interdisciplinary project involving different fields such as Bayesian data analysis, statistical
physics and applied mathematics for the efficient exploration and minimization of complex scalar functions.
The project is centered on the Nested Sampling optimization algorithm [1,2] based on Bayesian statistics
to explore the relevant parameter space recursively effectively, obtain the topology thereof, and assess the
quality and reliability of the obtained optimum within a pre-determined statistical error.

Nested sampling works with a finite set of live points in the multi-dimensional space in which one
repeatedly substitutes the worst live point with a better oneE] This evolves towards a narrower and narrower
“nested” volumes of parameter space, in the end to obtain an optimum. Within that process the parameter
space is efficiently sampled in order not only to converge to an optimum but also to present a view on the
overall landscape, allowing a better assessment of the result and to access the topology of the function to
be optimized. The method, which was proposed 20 years ago, has been mainly applied to data analysis
[2H4]; recently, we contributed to assess its application to quantum statistical physics by simplifying the
calculation of the quantum partition function @ [5]. The evaluation of @), which involves summing the
quantity exp(—FE(Z;{a;})/kpT) over all accessible states [6], is crucial, as all thermodynamic properties
can be derived from itE] For a single system configuration ¥, distinct E(Z; {a;}) models are available, each
corresponding to a given accuracy and computational complexity. The bottleneck is the speedy evaluation
of E(¥;{a;}) for as large as possible samples of complex systems.

To date, the most used theory in material science is the Density Functional Theory (DFT), which
allows at most the simulation of a few hundreds of atoms for a few picoseconds, at a viable computational
cost. Moreover, the DFT energy function has no analytic expression. An alternative are machine-learning
generated energy F(%;{a;}) models. These can provide excellent results at a much lower cost (up to 10?
smaller than the DFT) but are strongly dependent on the training process as, while they interpolate well,
extrapolations will generate physically unacceptable errors. Therefore, scrutinizing the quality of machine-
learning models, once trained via a set of atomic configurations and the corresponding DFT energy and
gradients, can be unworkable, especially for high-energy configurations that can often be outside the initial
training set. Furthermore, the neural network weights form a very large parameter space and have no
physical meaning so far.

Finally, analytical interaction models, such as the Lennard-Jones or Morse potentials, variants and
combinations thereof, based on physical principles and fitted to theoretical and experimental data, can be
much more efficient, but are usually limited to a narrow range of conditions. Finding the correct analytical
expression and optimal set of parameters is a rather lengthy process requiring both expertise and intuition.
This results in a maze of different expressions adapted to specific situations. Indeed, the extension of
analytical interatomic energies F(Z;{a;}) to a wide ensemble of conditions and the systematic assessment of
their reliability is still an open problem, although some models date back to a century ago. In this respect,
nested sampling can tell us to what extent a given model is reliable and whether adding another parameter
to it makes it better or not. This will provide a highly valuable mathematical guideline in this quest that
will be complemented by additional mathematical methods for the reduction of pertinent parameters |7}, 8|.
Moreover, because the parameters {a;} result from highly non-linear fitting, nested sampling (or, better,
metasampling as we work in the parameter space) can describe the topology of the whole parameter space,
including secondary minima.

Working plan

1. For a given material, compute a database of statistically uncorrelated atomic configurations {Z} in-
cluding the energy F(Z) and gradients V,, F(Z) for each configuration as obtained via the DFT or
similar methods;

!The quality of live points is measured in terms of a positive-definite object function to be minimized.
2E(#;{a;}) depends on a vector of dimension Ng,; that defines the microscopic state and some parameters {ai,...,ap}.
The partition function sums up over the Ng,s variables.



2. Choose a starting model for the potential among those available in the literature, preferably with a
small number of parameters. Using the results from the DFT as a reference, evaluate the likelihood
of that model;

3. Increase the complexity, flexibility by adding new parameters and simplifying the problem with math-
ematical tools, while assessing the improvement or lack of it using nested sampling and the computa-
tional speed-up;

4. Compare the performance of the new model in reproducing DFT data;

5. Either use the improved model in standard simulations, or use nested sampling again to sample more
precisely the configurational phase space for a partition function evaluation and statistical (quantum)
properties of the material. A similar strategy can be applied to find effective Hamiltonians working
on a relevant subset of the microscopic space (Nefr < Neof)-

6. When studying the quantum effects of light nuclei in condensed matter (such as H diffusion in real
materials, with applications for energy production and storage or giant isotope effects — see below),
apply our extended partition function method [5] that we successfully tested in small rare-gas clusters.

As first applications, we choose some selected problems in materials science as inspired by recent works:

e High-pressure ice and water/ammonia alloys as observed inside planets in which the combination of
hydrogen bonds and nuclear quantum effects [9] is at work.

e NaOD versus NaOH. The former does exhibit a structural quantum phase transition while the latter
isotope does not [10], which indicates giant nuclear quantum effects. Both the partition function issue
and a satisfactory effective Hamiltonian remain to be set up.

Perspectives and candidate’s skills

The proposed work will deal both with practical studies of real materials and formal developments of the
method. Mathematical input was vital in previous work and will remain so. The rigorous assessment of model
potentials E(Z;{a;}) on the basis of Bayes’ statistics could have deep consequences on their improvement as
well on the simplification of machine-learning potentials. The new mathematical tools that will be developed
all along the project could spread in other fields, such as statistics and data analysis.

The ideal candidate has a background in quantum and statistical physics, applied mathematics and
good programming skills. He/She will benefit from a very open scientific and interdisciplinary environment:
the project brings together physicists with distinct expertise (Fabio Finocchi for the theory of solid state
and Martino Trassinelli for Bayesian methods for atomic spectroscopy at INSP), in close collaboration with
Julien Salomon at INRIA for his mathematical skills in model selection algorithms. We also expect to benefit
from the SCAI environment, exchanging with researchers in applied mathematics and statistical learning.
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