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1 Gradual domain adaptation

1.1 Context

In classical machine learning, the purpose is to estimate
a model, for instance via a parameter θ ∈ Θ, using a
training set L = {(xi, yi), i = 1, . . . , n0} of input/output
pairs. This can be done by minimizing an empirical risk:

θ∗ = arg min
θ∈Θ

R(θ,L),

R(θ,L) =
∑

(xi,yi)∈L

`(h(xi; θ), yi),

where `(h(xi; θ), yi) is the loss incurred when predicting
h(xi; θ) when yi is the true label. This approach relies on
the assumption that all data are distributed according
to the same distribution P (X,Y ).
In domain adaptation [4], the initial data supposedly
follow some source distribution P0(X,Y ). The aim is to
train a model able to process data from a target distri-
bution PT (X,Y ), possibly far away from P0. However,
generally, only unlabelled target data UT = {xi, i =
1, . . . , nT } with xi ∼ PT (X) are available: this impedes
computing the best estimate θ∗T for PT (X,Y ) in a super-
vised way, and θ∗0 is generally suboptimal for PT (X,Y ).

1.2 Gradual domain adaptation

In gradual domain adaptation [2], in addition to the la-
beled dataset L and the unlabeled target instances UT ,
subsets of “intermediate data” Ut = {xti, i = 1, . . . , nt}
are available, with xti ∼ Pt(X): the underlying distri-
bution “gradually” evolves from P0(X) to PT (X), after
having gone through each Pt, t ≥ 1.
The idea of this PhD proposal is to investigate leverag-
ing these intermediate data to obtain gradual parameter
estimates θ∗t , t = 0, . . . , T , so that a better estimate of
θ∗T can eventually be reached.

2 Research directions

2.1 Gradual domain adaptation

Our purpose is to propose to use data imprecisiation
and weakening as a way to leverage the data in the pre-
vious steps (and in particular at step t − 1) leading to
more robust estimates θ∗t . This arguably requires a reli-
able self-supervised labelling process, to associate every
unlabeled intermediate instance xti with a pseudo-label
h(xti; θ∗t−1), except for those associated with too am-
biguous predictions, or those who are too far away from
the distribution Pt−1(X).
For instance, a simple way to exploit previous data, ex-
plored previously in another setting [7], would be to
use the estimated model h(·; θ∗t−1) to label the instances
xti, but to allow for partial (or vague) label predictions.
Such partial predictions can be used to account for two
kinds of uncertainty [3]: ambiguity (instances close to
decision boundaries), and poor knowledge (outliers in
low-density regions).
In order to leverage data from previous steps, we may
allow them to “drift” towards the new distribution Pt
(unfortunately known only up to Ut). We propose to ac-
count for such a drift by “imprecisiating” past data into
regions whose sizes increase with time. For instance, for
some xi,t−u observed u periods before the current one,
we may the set Xi,t−u = xi,t−u±u·δ, i.e. an hyper-cube
whose size increases as times passes by.

2.2 Possible application to probabilistic
circuits

Probabilistic Circuits (PCs) are prominent class of
tractable generative probabilistic models, among which
sum-product networks [6, 8]. Complex probability dis-
tributions are modelled by combining simple distribu-
tions using products (via product nodes) and mixtures
(via sum nodes)—Figure 1 shows a simple example.
Training (and notably structure inference) remains an
open problem. Arguably the most classical strategy,
LearnSPN [1] recursively partitions the instances (to cre-
ate sum nodes) or the variables (product nodes).
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PCs are a powerful approach to probabilistic learning,
since they can approximate a wide variety of distribu-
tions, and even arbitrarily complex ones by making the
network “deep” [6]. A robust variant has been proposed,
in which sets of weights, rather than single weights, are
associated to the sum nodes [5].
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Figure 1: Example of SPN: the sum node (in blue) cor-
responds to a mixture (with weights 0.45 and 0.55) of
the product nodes (in green), which themselves multiply
the base distributions in the leaves (in salmon).

Due to their versatility, their ease of use, and their pos-
sible extension to robust learning, SPNs may be con-
sidered as a suitable candidate to the gradual domain
adaptation setting considered in the PhD proposal. We
may more particularly investigate

1. aligning the “robustification” of the PCs to the data
relevance (determined by their drift and quality),

2. designing PCs with calibration guarantees, follow-
ing previous research [7], so as to provide additional
robustness guarantees,

3. developing interpretation mechanisms offering in-
sights into the drift process, allowing for reducing
(part of) the uncertainty in the final model.

3 Relation to PostGenAI@Paris

The PhD proposal addresses transfer learning through
the prism of robust inference, with a focus on deep gen-
erative probabilistic models. Its ultimate purpose is to
tailor trustful, robust and understandable models offer-
ing tractability guarantees.
Such models are particularly well-suited to high-stake
applications, such as healthcare. As such, the PhD pro-
posal perfectly aligns with the topics brought forward
in the scientific project of PostGenAI@Paris.

4 Desired candidate profile

– solid background in probability, statistics, and ma-
chine learning; good knowledge in optimization;

– programming skills (preferably Python);

– autonomy, curiosity, keen interest for new topics.

5 Supervising team

This PhD proposal reunites two main participants of
SCAI and PostGenAI@Paris, namely the université de
technologie de Compiègne (UTC) and Sorbonne univer-
sité (SU). The supervising team is composed of

– Benjamin Quost, professor, UTC, Heudiasyc labo-
ratory;

– Sébastien Destercke, senior researcher, CNRS,
Heudiasyc laboratory;

– Pierre-Henri Wuillemin, associate professor, SU,
LIP6.
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