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In recent years, the emergence of virtual and augmented reality technologies (VR/AR) has pro-
duced many scientific and technical challenges in closely related fields. For sound reproduction, one
key challenge is reproducing a virtual sound source in a specific acoustics environment, a process
called acoustic auralization. More specifically, in AR applications, real world sounds need to coexist
seamlessly with virtual ones in the same acoustics environment, and this highly critical auralization
process is performed using a very limited set of information. Typically, a head-mounted device is
equipped with cameras which can yield information about a visual environment, and microphones to
capture information on the sound field. Currently an active area of research, the aim is to use an
analysis-synthesis process [1], using the data collected through these devices, to resynthesize a virtual
acoustic scene seamlessly placing any virtual sound sources in the same acoustical environment as real
ones.

Machine learning (ML) is rapidly becoming the prevalent foundation for solving complex audio
signal processing problems as well as tasks related to room acoustics. The inherent statistical properties
embedded within audio signals makes them good candidates for ML optimization. In the context of
room acoustics, recently proposed methods include the use of physically-informed neural networks
for sound field reconstruction [2], blind acoustic parameter estimation [3, 4], and acoustical inverse
problems to infer physical information, such as walls locations, from acoustical measurements [5].
However, training these ML models remains a significant challenge, as they require very substantial
datasets of acoustical footprints, known as room impulse responses (RIRs), which are inherently
difficult and time-consuming to acquire. As a result, research typically relies on acoustic simulation
to produce large datasets [6, 7, 8]. However, due to simplifications inherent to these simulation
algorithms, the data they produce tend to differ – from a signal processing perspective – from data
measured in real rooms. Consequently, many acoustic-related ML models struggle to deliver accurate
results in practical scenarios, when real data is used for inference [5].

This thesis project aims to overcome these limitations by developing state-of-the-art parametric
reverberation methods [9, 10] to synthesize large datasets of realistic spatial room impulse responses
(SRIRs) optimized for immersive audio applications [11, 12]. The synthesis approach will rely on
acoustically relevant parameters and be evaluated for realism to enhance ML training. Beyond broader
implications for acoustics-related ML, this method will significantly improve blind auralization in AR
for real-world applications. The parametric reverberator will model key acoustic properties, including
time-frequency and directional decay profiles [12], source-receiver positions, multi-exponential rever-
beration times, spatial coherence [13], spatially distributed early reflections [14], and temporal echo
density evolution. Novel synthesis techniques will be tailored to reproduce the complex transition from
(early) specular reflections to late reverberation, incorporating scattered reflections and background
noise to simulate natural environments. Ultimately, this parametric approach will achieve superior
spectral, temporal, and spatial alignment with real-world SRIRs compared to traditional reverberation
and geometric simulation methods.

At the start of the project, we will use a dataset of generated SRIRs to build an acoustic parameter
inference model. This initial ML model will validate our approach by training on synthetic data and
inferring parameters – such as reverberation time [15] – from measured data. In the next phase, focused
on AR applications, our synthesis method will generate a larger and more diverse set of SRIRs (Fig.1).
These will be convolved with anechoic speech to train a diffusion model for reverberant speech. Using
microphone signals as input, the model will perform acoustic in-painting on dry sounds, generating
realistic reverberated signals. This process will enable a fully automated, end-to-end blind auralization
framework that dynamically places virtual sound sources at unseen locations based on evolving acoustic
conditions. Our approach, will also be assessed and improved for challenging practical conditions. For
instance, beamforming analysis of microphone array input signal allow multiple simultaneous sound
sources in a room. Furthermore, in a field highly dependent on the quality of its training data, the
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Figure 1: Proposed acoustical audio in-painting and parameter inference model.

developed synthesis framework will offer much broader applications, and have a deep impact in many
acoustics-related ML tasks. Toward this objective, the resulting synthesis framework will be released
as open-source.

The PhD candidate will work under the guidance of a multidisciplinary team, including thesis
director Nicolas Obin (HDR) and co-advisors Markus Noisternig (PhD) and Benoit Alary (PhD),
bringing expertise in machine learning, audio signal processing, acoustics, and spatial audio analy-
sis/synthesis. The research will be conducted at IRCAM (STMS, UMR 9912), a leading institution
dedicated to bridging scientific research, technological innovation, and artistic creation in sound and
music. The ideal candidate should have a strong background in signal processing and a solid under-
standing of machine learning methods, enabling them to contribute effectively to this cutting-edge
research.
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