
Deep learning methods for 3D prediction, identification and classification

of macromolecular surfaces in cryogenic electron tomography (Cryo-ET)

Cellular environment contains numerous macromolecules in interaction and their understanding is critical to
understand their function. Following the recent advances in the determination of atomic resolution molecular struc-
tures and assemblies [5], in protein structure prediction [15, 12], and in the increased accessibility of molecular
dynamics simulation [1, 4], there is a profusion of molecular structural biology data that is available to the scien-
tific community. This data profusion makes machine learning methods, and in particular, deep learning methods
totally adequate to support molecular structure and assemblies determination in Cryo-EM and Cryo-ET. Cryo-EM
and cryo-ET are able to resolve atomic resolution structures of supramolecular systems and could now address the
drawbacks of X-Ray crystallography and Nuclear Magnetic Resonance. In addition, Cryogenic-electron Tomogra-
phy (Cryo-ET) allows to analyze macromolecules in their cellular environment.

Although cryo-EM has progressed to average structure resolution of 3Å, usual low-resolution density map data
affects the precise determination of small molecular objects (less than 150/300 kDa) due notably to the conforma-
tional heterogeneity of macromolecules [2], the noise in the images and the missing wedge of information due to the
low range of angles [13]. As a consequence, more than half of the cryo-EM samples available in the EMDataResource
have no atomic structure determined yet [6].

The reconstruction and identification of macromolecules in Cryo-electron tomograms is a challenge. The perfor-
mance of existing methods has notably been evaluated during the 3D Shape Retrieval Challenge community bench-
mark [3] (SHREC). Two groups of methods have been developed : (i) the structure refinement based-approaches
requiring predefined model (Rosetta-Ref, Flex-EM, iMODFIT, MDFF, Situs), and (ii) the de-novo modelling that
may be based on deep learning (DL) (Rosetta-dn, CR-I-TASSER, DeepTracer, DeepMainmast). While the DL
methods improve the performance in 3D reconstruction, the results are significantly improvable on low density
maps [8, 16, 11]. Performance can be improved by two tricks : (i) using AlphaFold (AF) to reconstruct accurately
missing local regions, and (ii) annotating proteins [11]. But, the performance on multiple chain complexes (entire
EM map) can be improved as in [11].

The doctoral project proposal is based on : (i) the evaluation and optimisation of DL-based 3D reconstruction
methods on our benchmarking dataset in order to explore and explain the strong and weak points, and (ii) the
identification and annotation of these macromolecules based on predictive models (AlphaFold, Molecular Dynamics)
and on macromolecule retrieval.

The workflow can be as follows: (i) image denoising and extraction of molecular objects [13], (ii) application of
various 3D reconstruction methods to convert 2D images into 3D structures, (iii) conformational sampling of these
3D models with structure prediction and Molecular Dynamics, and (iv) convert them back into shapes for retrieval
on the cryo-EM map. The identification and annotation will allow us to understand their functional role within the
cellular environment and will increase the number of identified proteins in Cryo-electron tomograms, which will be
useful for further development and evaluation of 3D DL-based classification methods.

This research project is multidisciplinary, involving computer vision, machine learning and structural and molec-
ular biology. It will require : (i) the retrieval and construction of a challenging reference benchmarking CryoEM
dataset based on public data and collaborators tomographic data. (ii) an exhaustive evaluation of geometric deep
learning methods in identifying macromolecules in CryoEM densities, with support of the SHREC community bench-
mark for instance, (iii) deciphering the limitations and specificities of DL methods on our benchmarking dataset
and its extension for tomographic data, (iv)) analyzing collaborators and public data to identify macromolecules in
cellular tomograms, and (v) set up and distribute a complete open-source pipeline.

Expected candidate The ideal candidate should possess a strong academic background in Computer Science,
structural bioinformatics, or a related field. This includes a Master’s degree or equivalent in a relevant discipline.
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The ideal candidate should display: 1. Excellent programming skills in python and/or c++; 2. Solid foundation
in geometric deep learning techniques and algorithms; 3. Familiarity with popular deep learning frameworks like
TensorFlow or PyTorch; 4. Experience with structural bioinformatics tools and databases and 5. Knowledge of
protein structure prediction, molecular dynamics simulations, or protein-protein interaction analysis.

Supervision This doctoral research project will be directed by Prof. Matthieu Montes, CQSB, UMR7238 CNRS
- Sorbonne Université and Dr. Nathalie Lagarde, laboratoire GBCM, EA7528 CNAM. The team organized several
SHREC benchmarks on macromolecular shapes retrieval and co-authored 14 publications in computer science and
structural bioinformatics linked to this project, in particular: [14, 10, 9, 7].
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