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The ribosome is responsible for protein synthesis (translation). Bacterial
ribosomes are among the biomolecules targeted for antibiotic design. The
ribosome is composed of ribosomal RNA (rRNA) and ribosomal proteins
(r-proteins), and its movement along the mRNA, known as elongation, en-
ables the sequential attachment of amino acids to the protein undergoing
biosynthesis. The current view is that most of the ribosome’s functions are
accomplished by rRNA, the role of r-proteins being essentially thought of
in terms of stabilization and assembly [1–3]. However, this view has been
challenged by recent work [4–6], which highlights the role of r-proteins in
regulating the movements during elongation. Focusing on r-proteins rather
than rRNA, and vice versa, changes the qualitative description of the ri-
bosome’s movements. A quantitative understanding of the conformational
changes of the ribosome during elongation and of what drives these move-
ments would help settle the debate, depending on the level of granularity one
wants in the description of the movements. Molecular dynamics simulations
theoretically offer a fine-grained characterization of these movements but are
limited in practice in their ability to sample large conformational changes of
the ribosome due to its size (number of atoms), structural complexity, and
the wide range of time scales of the dynamics that are relevant to transla-
tion [7, 8]. Furthermore, as exemplified by the debate on the role of rRNA
and r-proteins, an a priori focus on one or the other should be accounted
for in simulations to allow biasing the sampling of certain movements rather
than others and exacerbate differences. In this project, we propose to speed
up molecular dynamics simulations of the ribosome during translation by
incorporating a wide range of prior information that we want to account for.

A growing amount of work in machine learning and deep learning focuses
on exploiting geometric and topological structures of signals and models to
improve processing and to further the theoretical understanding of such pro-
cessing (see geometric deep learning [9, 10], sheaves in data science [11–19],
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and categorical approaches in machine learning and probability, specifically
for theoretical inquiries [18, 20–27]). In particular, generalizations of graph
neural networks (GNNs), prominent in learning on biomolecules such as pro-
teins, to heterogeneous structures have gained recent focus [11–14] and have
shown promising results for better handling of heterogeneous signals over
graphs. In [17,19], the supervisors of this proposal extended the framework
of graphical models and Markov Random Fields (MRFs), which are cen-
tral for inference of energies in interacting systems, to allow the fusion of
heterogeneous descriptions of signals that incorporate dynamic and geomet-
ric priors and proposed a message-passing algorithm for inference in such
models. Both approaches, the generalization of GNNs and of MRFs, rely
on introducing geometric-combinatorial objects—specifically, sheaves over
partially ordered sets (see for sheaf theory [28], cellular sheaves [11], and
sheaves in optimization [17,19])—to account for a larger range of geometric
and topological prior knowledge on signals. Topological prior is understood
in a broad sense, where topology can arise from different perspectives or
‘views’ on the molecule and the way these views interact. An example of
this is when these perspectives arise from coarse-grained models of specific
regions of the molecule that interact through overlapping sub-parts. Rather
than introducing a coarse-graining of the entire biomolecule, one allows for
more flexibility in the descriptions of these regions and their junctions with
other regions by considering all these descriptions collectively to reconstruct
plausible conformations of the whole biomolecule.

Leveraging the combined expertise of the supervisors in the molecular
dynamics and geometric machine learning, we aim, first, to exploit recent
methodological advances in geometric machine learning and deep learning
to accelerate and enhance these simulations, in particular for elongation.
This will be achieved by interpolating high-resolution snapshots of the ribo-
some during key transitions [29] while incorporating diverse geometric and
topological priors. Prior knowledge of small molecules has proven effective
in accelerating molecular dynamics [30]. The objective of this PhD will be to
benchmark architectures inspired by geometric machine learning and deep
learning for accelerating molecular dynamics, with a focus on elongation.
The second aim of the project is to provide results in quantifying the impact
of the topology of these sheaves on the quality of inference and learning, and
towards a classification of different critical points of the associated losses
in order to obtain better interpretability of inferred or learned dynamics
(see [31]).

The PhD student will be co-supervised by Grégoire Sergeant-Perthuis
and Élodie Laine, the research will take place at CQSB, Sorbonne Université.
The PhD student will also benefit from discussions with Youri Timsit (MIO)
and Daniel Bennequin (Université Paris-Cité).
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