
Machine Learning interatomic potentials from accurate quantum Monte Carlo calculations: 
application to water solvation. 

In recent years, the modelling of physical systems and the numerical prediction of their properties have 
seen an unprecedented boost driven by artificial intelligence (AI) technologies applied to fundamental 
science. In the realm of condensed matter and computational chemistry, machine learning interatomic 
potentials (MLIP) trained on datasets generated by density functional theory (DFT) calculations or by 
more advanced coupled cluster techniques have proven their reliability and shown breakthrough 
speedup in molecular dynamics simulations. They allowed one to reach systems sizes and time scales 
previously inaccessible, bridging more tightly a microscopic description with the macroscopic world, 
by retaining at the same time the quantum nature of matter and by revealing its implications at the 
macroscale. In this regard, paradigmatic examples are quantum criticality and phase transitions 
appearing in pristine hydrogen[1], as well as in liquid water and water ice[2], particularly challenging 
because they need an accurate quantum description of both electrons and nuclei. 

While an impressive progress has been made in the development of new neural network (NN) 
architectures to improve the flexibility and representability of their target models[3], the dependence of 
the NN predictability on the quality of the training set is emerging more and more as a severe weakness 
in the framework of atomistic simulations. This is a major bottleneck for next-generation AI schemes 
applied to the condensed phase, because they badly need accurate data training to improve their self-
sustained reliability. With the aim at overcoming these flaws, seminal works explored two main 
directions, on one side by creating more sophisticated workflows that guarantee data provenance and 
curation obeying FAIR-data principles[4], on the other side by improving the reference theories used 
to generate the training sets, with the replacement of DFT by more advanced quantum chemistry 
methods, such as coupled cluster[5]. In this spirit, only preliminary attempts have been presented so far 
to derive MLIP based on training sets generated by quantum Monte Carlo (QMC), a powerful family 
of methods that retains good scalability and high precision in electronic structure calculations. Two 
main factors have been detrimental for a wider deployment of this promising ML+QMC combination: 
the stochastic noise inherent in the QMC technique and the difficulty in generating MLIP based on 
energy-only datasets, without the information of nuclear forces, harder to access in QMC. In this project, 
we want to exploit the so-called Δ-machine learning approach and the information of nuclear forces 
readily available in the TurboRVB QMC package[6] to construct an accurate MLIP for water. 
Preliminary applications to liquid hydrogen have shown how Δ-learning is able to harness the QMC 
correction with respect to DFT forces and energies despite the stochastic noise[7].  

During this thesis, a systematic analysis will be carried out to develop a ML+QMC for water by studying 
in particular: 

● new strategies to generate improved training sets based either on sparsification or on active 
learning (or on both), obtained from configurations produced by path integral molecular 
dynamics, thus natively including quantum nuclear effects; 

● advanced workflows to optimize the QMC wavefunction for the target system to generate low-
variance nuclear forces and highly-accurate energies in a high-throughput mode deployed 
across the training set configurations. This will naturally include non-trivial long-range 
interactions and polarization effects at the QMC level of accuracy; 



● optimal machine learning schemes to combine baseline and Δ models, efficiently and 
accurately, by relying on state-of-the-art machine learning interatomic potentials with higher 
order equivariant message passing, such as MACE[8]. 

The developed ML+QMC framework will be applied to water solvation. Water is a very active area of 
research; it is a playground where quantum nuclear and many-body effects lead to exotic phases and a 
rich variety of ice structures. Water solvation depends strongly on thermodynamic conditions[9] and it 
is a crucial aspect to understand many properties, ranging from ion conductivity to protein folding. 
Accurate potentials for water already exist, such as q-TIP4P and MB-pol, but they are not easily used 
in combination with conventional force fields. In our approach, both water and the solute will be treated 
at the QMC level, guaranteeing a seamless integration of different components in the final MLIPs, and 
their transferability. As a solute, we will start from the simple proton, a charge defect that is relevant 
for benchmarking the anomalous ion conductivity in water. As a second step, we will study H2, which 
will allow us to analyze H2O-H2 interactions in host-guest structures, important for hydrogen storage 
applications of high environmental impact. 

The content of the present project is aligned with PostGenAI@Paris project’s scientific missions as 
disruptive technology. Indeed, the deployment of the ML+QMC approach can lead to the generation of 
a new family of MLIP potentials retaining the same quality as the first-principles QMC simulations. 
This new family of MLIP will have a breakthrough character as it will overcome deficiencies related to 
the training sets generation, affecting a substantial fraction of modern MLIPs, and will rely on a more 
robust integration between machine learning schemes and unbiased QMC data. The digital 
infrastructure for the data, training, and MLIP repository will be supported through the DIAMOND 
initiative of the PEPR DIADEM. The IMPMC partner has indeed hired, within this initiative, a CDD 
research engineer specialized in the automatization of MLIP training and generation. 

We are looking for a student with a solid background in theoretical physics, statistical physics and 
physical chemistry of materials. Familiarity with mathematical formalism and numerical programming 
is an important prerequisite. He/she will be supervised by Michele Casula, expert in quantum Monte 
Carlo methods and condensed matter theorist, by Rodolphe Vuilleumier, expert in quantum chemistry 
and quantum nuclear dynamics, and by Marco Saitta, in the CoPil of DIAMOND and expert in both 
machine learning and atomistic simulations. 
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