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Intellectual Merit The emphasis in materials science has been on developing new materials with
multiple functionalities through nanostructuration. The nanostructural nature of these materials,
while rendering them versatile, presents a challenge to comprehensively understanding their behav-
ior. Internationally, competition is intense, especially in developing devices to explore and exploit
unusual physical aspects of nanostructures. Understanding the nanostructure-macroscopic behavior
relationship is crucial for translating scientific findings into useful engineering systems.

A multi-scale description of the structure is the currently favored approach. However, predicting
material properties requires precise values of relevant microstructural parameters, typically generated
from advanced experimental characterization techniques. These data are often scarce or collected
intensively on a narrow set of materials, making it challenging to construct a rationale for developing
materials with different targeted performances.

To address this, the scientific community has pivoted towards atomistic simulation to investigate
experimentally explored cases, aiming to understand observed phenomena and extrapolate findings
to other configurations. Both approaches remain costly and require multiple iterations. In the con-
temporary realm of artificial intelligence, machine learning models offer an alternative, identifying
influential parameters for targeted properties or uncovering hidden trends to predict new composi-
tions’ behavior. However, these techniques require large databases for efficient training, which are
often lacking. Generative data augmentation may be a viable option if physically controllable and
interpretable.

Context, Methodology and Thesis Objectives Research on nanostructured materials underscores
the imperative to predict and comprehend their macroscopic properties for enhanced product design
and performance optimization. Predicting behavior prior to experimental development mitigates
the cost of new materials development. Atomistic simulation, owing to nanostructured aspects,
represents the most prevalent methodology. Although providing valuable insights, the substantial
computational cost constitutes a significant limitation. Consequently, while atomistic simulations
yield valuable data, they are confined to specific cases and may not be readily applicable to other
scenarios. An illustrative example, see Figure 1 is our recent findings on atomistic-driven multifunc-
tionality in nanoparticle-reinforced polymers (1)

In this study, the nanoparticle (NP) surface chemistry is a critical parameter in polarizing the
polymeric chain surrounding the NP, thereby modulating local polarization and piezoelectric prop-
erties of the composite materials in addition to its mechanical properties(2). Optimization of these
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Figure 1: example of the effect of iron oxide surface chemistry on the polymer polarization (1))
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properties is essential for designing efficient nanostructured materials for energy harvesting, storage,
or generation. Although significant, these findings are limited to specific NP compositions, surface
chemistries, and polymeric materials. Generalizing these results to a broader range of NP surface
chemistries and polymeric materials presents an opportunity to develop novel materials. Due to
computational costs, the exploration of all possible parameters is precluded; similarly, experimental
attempts are excluded for the same reasons. Deep learning algorithms that learn from available data
and extrapolate to new cases may serve as a viable alternative (3).

Deep learning (4; 5), a subset of artificial intelligence, extracts patterns from data and makes pre-
dictions based on training inputs. While significant advancements have been made in deep learning
techniques, the availability of large and representative training datasets remains crucial for model
performance. Models trained on limited or non-representative datasets tend to generalize poorly.
To address this, data augmentation techniques enhance model resilience and accuracy, particularly
with small or unrepresentative datasets. Traditional methods involve simple transformations of ex-
isting samples to expand dataset variability. In contrast, deep learning-based augmentation employs
generative models to synthesize new data points. Among these, Generative Adversarial Networks
(GANs) and autoencoders are widely used. GANs function through a competitive process involving
two neural networks: a generator that produces realistic synthetic data and a discriminator that
distinguishes between authentic and generated samples. This adversarial training enables the gen-
eration of high-fidelity synthetic data. Autoencoders compress input data into a lower-dimensional
latent space and then reconstruct it. By manipulating latent representations, autoencoders can gen-
erate novel data samples, contributing to dataset diversity and improving model training outcomes.

The primary objective is to advance the development of nanostructured materials with tailored
properties through novel approaches. This thesis proposes an integrated, data-driven approach to
expedite the development of advanced nanostructured materials. Using machine learning-driven data
augmentation—specifically GANs, VAEs, and hybrid architectures—we address the constraints of
limited datasets in materials science. This strategy complements existing experimental and atomistic
modeling efforts, allowing robust predictions of material behavior across scales. It reduces time and
cost associated with iterative experimentation and simulation. Moving forward, deeper validation of
the synthetic data’s physical relevance—via experiments and atomistic simulations—will be crucial.

Candidate profile This thesis suits students with strong backgrounds in materials science/compu-
tational chemistry or applied math and machine learning, willing to venture outside their narrow
specialization. Student selection will be based first and foremost on their motivation to work on a
multidisciplinary topic in a pluri-disciplinary team.
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